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Fibroblast heterogeneity: more than skin deep
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Summary

Dermal fibroblasts are a dynamic and diverse population Fibroblasts engage in fibroblast-epidermal interactions
of cells whose functions in skin in many respects remain during hair development and in interfollicular regions of
unknown. Normal adult human skin contains at least three  skin. They also play an important role in cutaneous wound
distinct subpopulations of fibroblasts, which occupy unique repair and an ever-increasing role in bioengineering of
niches in the dermis. Fibroblasts from each of these niches skin. Bioengineered skin currently performs important
exhibit distinctive differences when cultured separately. roles in providing (1) a basic understanding of skin biology,
Specific differences in fibroblast physiology are evident in (2) a vehicle for testing topically applied products and (3)
papillary dermal fibroblasts, which reside in the superficial a resource for skin replacement.

dermis, and reticular fibroblasts, which reside in the deep

dermis. Both of these subpopulations of fibroblasts differ

from the fibroblasts that are associated with hair follicles. Key words: Skin, Fibroblasts, Skin equivalents

Introduction Dermal papillae greatly extend the surface area for epithelial-
Dermal fibroblasts are an essential component of skin; theyjesenchymal interactions and delivery of soluble molecules
not only produce and organize the extracellular matrix of0 the epidermis. A vascular plexus, the rete subpapillare,
the dermis but they also communicate with each other an@emarcates the lower limit of the papillary dermis (Figs 1, 2).
other cell types, playing a crucial role in regulating skinThe reticular layer of the dermis extends from this superficial
physiology. Other resident cells include epidermal, vasculayascular plexus to a deeper vascular plexus, the rete cutaneum,
and neural cells (Ansel et al., 1996; Detmar, 1996; Werner antihich serves as the boundary between the dermis and
Smola, 2001). In addition, skin contains various cells ohypodermis. Hair follicles and their associated dermal cells
hematopoietic origin. These include a constitutive populatio@xtend into and often through the reticular dermis to terminate
of dendritic cells and a more ephemeral population ofn the hypodermis, a tissue rich in adipocytes.
leukocytes that includes monocytes/macrophages, neutrophilsMechanical separation of skin (dermatoming) into defined
and lymphocytes (Nestle and Nickoloff, 1995; Gonzalezapillary and reticular layers allows establishment of explant
Ramos et al., 1996; Lugovic et al., 2001). Dermal fibroblastsultures of cells from each layer. Papillary fibroblasts divide at
represent a heterogeneous population of cells defindaster rates than do site-matched reticular fibroblasts (Harper
according to their location within the dermis (Fig. 1). Twoand Grove, 1979; Azzerone and Macieira-Coelho, 1982;
subpopulations of fibroblasts reside in distinct dermal layersschafer et al., 1985; Sorrell et al., 1996; Sorrell et al., 2004).
the papillary and reticular dermis (Cormack, 1987).Reticular dermal fibroblasts seeded into type | collagen lattices
Fibroblasts cultured from each of these layers have differemontract them faster than do papillary dermal fibroblasts
characteristics (Harper and Grove, 1979; Azzerone an(Schafer et al., 1985; Sorrell et al., 1996). When grown to
Macieira-Coelho, 1982; Schafer et al., 1985; Sorrell et algonfluence in monolayer culture, the papillary cells attain a
1996; Sorrell et al., 2004). A third group is associated witthigher cell density partly because they are not fully contact
hair follicles. These lie in the dermal papilla region of theinhibited (Schafer et al., 1985; Sorrell et al., 2004).
follicle and along its shaft (Reynolds and Jahoda, 1991;
Jahoda and Reynolds, 1996). Other subpopulations of dermal o
fibroblasts might also exist; however, the focus of thigExtracellular matrix differences
Commentary is the fibroblast subpopulations that exhibiThe papillary dermis and reticular dermis differ in both the
stable and well-characterized differences in culture. composition and organization of their respective extracellular
matrices (Table 1). The papillary dermis is characterized by
thin, poorly organized collagen fiber bundles, consisting
Papillary and reticular dermal fibroblasts primarily of type | and type Il collagens, which contrast with
The papillary dermis is approximately 300-4@@ deep. This the thick, well-organized fiber bundles in the reticular dermis
depth is variable and depends upon such factors as age dfrmack, 1987). Collagen fiber bundles in the papillary
anatomical location. Typically, the superficial portion of thedermis contain more type Il collagen than do those in the
papillary dermis is arranged into ridge-like structures, theeticular dermis (Meigel et al., 1977). Other matrix molecules
dermal papillae, which contain microvascular and neurahre also differentially apportioned between the papillary and
components that sustain the epidermis (Cormack, 1987deticular dermis. Immunohistochemical studies of normal adult
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Fig. 1. Adult human skin is a
layered organ consisting of an
epidermis that is attached to &
dermis by an elaborate
connective tissue structure, th
basement membrane (BM). Tl
basal surface of the epidermis
indented by dermal and vascu
components called dermal
papillae (*). The dermis is
divided into two functional
layers, the papillary dermis an
reticular dermis. These two
layers are separated by a
vascular plexus, the rete
subpapillare. This plexus is fe
by another vascular plexus, th
rete cutaneum, located at the
base of the reticular dermis.
Skin also contains hair follicles
(HF) and glands (not shown). Two distinct populations of dermal fibroblasts have been cultured from the interfolliculahdesgisn
between hair follicles. Papillary fibroblasts (PF) are cultured from skin dermatomed at a depth of 0.3 mm and reticulds fiBfEbiae
cultured from skin located at a depth below 0.7 mm. Hair follicle fibroblasts are obtained by carefully plucking or dissesfimgrhthe skin
and then placing these hairs or segments of these hair follicles onto surfaces of plastic culture dishes. Hair folliclwgocsulbaiets of cells:
the follicular sheath cells and dermal papilla cells.

Interfollicular dermis

skin highlight structural and compositional differences in1993; Walchli et al., 1994, Lethias et al., 1996; Berthod et al.,
proteoglycan deposition (Fig. 3). The proteoglycan decorin i4997; Akagi et al., 1999; Grassel et al., 1999).

intensely expressed in the papillary dermis, but is otherwise Experimental studies have explored the issue of whether
dispersed between collagen fiber bundles in the reticulawltured papillary and reticular fibroblasts produce different

dermis. By contrast, versican associates with microfibrils in themounts and types of extracellular matrix molecule that might
papillary dermis, but is more extensively expressed in elastiaccount for the observed differences in skin (Table 2). In
fibers of the reticular dermis (Zimmermann et al., 1994; Sorrelhonolayer cultures, Schonherr et al. found that papillary
et al., 1999a). The non-fibrillar collagen types XII and XVI,dermal fibroblasts secrete significantly more decorin than did
along with tenascin-C, are characteristically found in thecorresponding reticular cells, and papillary fibroblasts contain
papillary dermis; whereas, collagen type IV and tenascin-X ammore decorin mRNA (Schénherr et al., 1993). By contrast, the
primarily restricted to the reticular dermis (Lightner et al.,two cellular populations produce identical amounts of

e . .4'\_/ r '.
. Pdpillary Dermis . .
Rl L e

Fig. 3. Immunohistochemical studies indicate that the papillary

dermis (Pap) contains high levels of the proteoglycan decorin (A).
The reticular dermis (Retic) contains elastic fibers oriented parallel to
the epidermis that contain the proteoglycan versican. Microfibrils
containing versican are also present in the papillary dermis as is

Fig. 2. The papillary and reticular dermis is separated by a vascular diffuse versican at the DEJ (panel B). The epidermis (E) does not
plexus, the rete subpapillare. The papillary dermis contains a highercontain detectable levels of these two proteoglycans. The dashed line
density of cells than does the reticular dermis. Dermal papillae indicates the approximate demarcation between the papillary and
extend the surface area of the epithelial-mesenchymal boundary. Bagticular layers (adapted from Sorrell et al., 1999a, with kind

45 pum. permission from Kluwer Academic Publishers). Barp@T.
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Table 1. Distribution of selected extracellular matrix molecules in dermal compartments

Matrix component Papillary dermis Reticular dermis Hair follicle
Collagens | and IlI High ratio of type lll to | Low ratio of type Ill to | Present
Collagen IV Present in basement membrane Absent Present in dermal papillae
Collagen VI Present at dermal-epidermal junction (DEJ) Weakly present Present in dermal sheaths
Collagen XII Present Low to absent High expression around follicular sheath
Collagen XIV Low to absent Present Low expression
Collagen XVI Present in DEJ-region Absent Unknown
Tenascin-C Present in DEJ-region Absent Present in sheaths and dermal papillae
Tenascin-X Weak in DEJ-region Present Not associated
Versican Diffuse in DEJ-region, present in matrix Present in association with elastic Present in dermal papillae
fibrils fibers
Decorin Present Present Unknown

biglycan. Another study found that site-matched papillary an
reticular fibroblasts differ in the relative levels of the
proteoglycans decorin and versican that they produce (Sorre
et al., 1999b).

Akagi et al. found that fibroblasts derived from the upper
middle and lower thirds of the dermis produced significantly
different amounts of mRNA for the1(XVI) of type XVI

collagen (Akagi et al., 1999). By contrast, Tajima and Pinnel m b, P S
quantified the amounts of type | and type IIl collagens L A A

produced by monolayer cultures to see whether synthet -

differences might account for the observed in vivo difference

(Tajima and Pinnell, 1981). They found no differences in the Collagen Lattice _

production of type | and type lll collagens by these twao
populations of cultured cells, although they noted an eIevaterqg_ 4. A skin equivalent consists minimally of a dermal equivalent

a}mount of type | procollagen in the m_edium of pap_illaryand differentiated epidermis cultured first submerged then at the air-
fibroblast cultures. Thus, cultured papillary and reticulafquid interface in a three-dimensional context. Fibroblasts (arrows)
fibroblasts exhibit stable differences in the production of somencased in a type | collagen lattice provide dermal support for the

but not all, extracellular matrix molecules. epidermis. The epidermis is stratified and contains differentiated
layers typically found in normal skin, including the (1) basal, (2)
spinous, (3) granular and (4) cornified layers. Bad
Fibroblasts and basement membrane formation

The epidermis of the skin is firmly attached to the underlying

dermis by a complex multi-molecular structure, the basemembllagen, laminin-5, other laminins and perlecan. Other studies
membrane (Burgeson and Christiano, 1997; Aumailley andlave shown that fibroblasts are the principal source of
Rousselle, 1999). The organization of basement membrane eéatactin/nidogen (Contard et al., 1993; Fleischmajer et al.,
form a morphologically identifiable structure results from al995). Marinkovich et al. then postulated that a differentiated
cooperative effort of both keratinocytes and fibroblastgpopulation of fibroblasts exists at the DEJ of skin that both
(Fleischmajer et al., 1993; Marinkovich et al., 1993; Smola eproduces basement membrane components and helps
al., 1998; Moulin et al., 2000). Marinkovich et al. studied thekeratinocytes organize them (Marinkovich et al., 1993).
cellular origin of various basement membrane molecules Coculture of fibroblasts and keratinocytes modifies the
by probing skin equivalents (Fig. 4) that contain bovineactivities of both cell types. Keratinocytes induce the
keratinocytes and human dermal fibroblasts with speciegxpression of transforming growth factor (TG¥)-by dermal
specific antibodies (Marinkovich et al., 1993). Type IV and Vllifibroblasts (Smola et al., 1994). Fibroblasts regulate the
collagen and laminin-1 produced by fibroblasts appearedroduction of laminins and type VIl collagen by keratinocytes,
in a linear array at the dermal-epidermal junction (DEJ)possibly through TGR- signaling (Kénig and Bruckner-
Keratinocytes also produced and organized type IV and VITuderman, 1991; Konig and Bruckner-Tuderman, 1994;

Table 2. Expression of extracellular matrix molecules by monolayer cultures of dermal fibroblasts

Matrix component Papillary fibroblasts Reticular fibroblasts

Collagens | and IlI Produced — ratio same as for reticular cells Produced - ratio same as for papillary cells
Collagens V and VI Produced Produced

Collagen XlI Produced Produced

Collagen XIV Not produced in monolayer culture Not produced in monolayer culture

Collagen XVI Produced at high levels Produced at low levels

Tenascin-C Produced Produced

Tenascin-X Not studied Not studied

Versican Produced at low levels Produced at high levels

Decorin Produced at high levels Produced at low levels
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Monical and Kefalides, 1994). The kinetics of basemenand GM-CSF mRNAs (Smola et al., 1993). The level of KGF-
membrane formation has also been studied in organotypic mRNA and the amount of protein released into culture
coculture models in which fibroblasts were either present anedium by cultured dermal fibroblasts were upregulated by
omitted (Smola et al., 1998). Specific basement membrarieeatment of these cells with IL-1 (Brauchle et al., 1994;
components gradually appeared at the DEJ; however, ti@hedid et al., 1994; Maas-Szabowski and Fusenig, 1996).
kinetics varied, depending on whether fibroblasts were presetdGF-1 in turn enhanced the release of tiLtdy keratinocytes.
The production of type IV collagen, laminin-1 and type VII Thus, a paracrine loop is established in situations where dermal
collagen by keratinocytes cultured alone was significantlfibroblasts and keratinocytes coexist (Maas-Szabowski et al.,
delayed or absent, suggesting that fibroblasts influenced tli©99).
production of these matrix molecules. On the dermal side, the Soluble factors released by fibroblasts do not possess
steady-state mMRNA levels of type IV collageh message in inductive characteristics with respect to interfollicular
fibroblasts were significantly enhanced when keratinocytekeratinocytes. Nonetheless, these factors can modulate specific
were present. Together, these studies indicate that elementsagpects of epidermal formation. Overexpression of KGF-1
basement membrane production are co-regulated by fibroblasesults in a hyperproliferative epidermis. This might result
and keratinocytes. from enhanced proliferation of basal keratinocytes and
Not all dermal fibroblasts interact equally well with suppression of terminal differentiation (Guo et al., 1993; Hines
keratinocytes in the formation of a basement membranend Allen-Hoffmann, 1996; Szabowski et al., 2000; Andreadis
Moulin et al. showed that myofibroblasts obtained from wounebt al., 2001). Excessive KGF-1 might also induce flattening of
sites do not support keratinocyte differentiation and basemettie basal surface of the epidermis (Andreadis et al., 2001).
membrane formation to the same extent as do normal derny contrast, overexpression of GM-CSF results in increased
fibroblasts (Moulin et al., 2000). Consequently, the ability waspoptosis of cultured keratinocytes, and overexpression of
compared of site-matched papillary and reticular dermaKGF-2 could accelerate keratinocyte differentiation (Breuhahn
fibroblasts to support basement membrane formation (Sorradt al., 2000; Suzuki et al., 2000; Marchese et al., 2001). These
et al., 2004). Papillary dermal fibroblasts appeared to induagbservations have led to the proposal that the epidermal
basement membrane formation faster when reticular fibroblastssponse to fibroblast-derived signaling molecules depends
were present. Therefore, fibroblasts adjacent to the epidermipon the ratio of these factors. Fusenig and coworkers have
might either produce more extracellular matrix components gfroposed that the ratio of KGF-1 to GM-CSF presented to
the basement membrane and/or produce soluble factors tlegiidermal cells determines the status of this tissue (Maas-
influence keratinocytes to re-establish a basement membrangzabowski et al., 2001). Site-matched papillary and reticular
dermal fibroblasts differ significantly in the release of KGF-1
o ) ) and GM-CSF into culture medium. Typically, the ratio of GM-
Intercellglar communication and interfollicular CSF to KGF-1 is higher in papillary fibroblasts than in
dermal fibroblasts corresponding reticular cells (Sorrell et al., 2004). Thus, these
Fibroblasts engage in paracrine and autocrine interactions iwo populations of cells exert subtle differences on epidermal
skin (Gilchrest et al., 1983; Boxman et al., 1993; Smola et alproliferation and differentiation.
1993; Kupper and Groves, 1995; Moulin, 1995; Schrdoder, Communication between fibroblasts and Kkeratinocytes
1995; Slavin, 1996; Smith et al., 1997; Kondo, 2000; Werneappears to involve AP-1 target genes in dermal fibroblasts.
and Smola, 2001). Rheinwald and Green developed a cultuBzabowski et al. examined fibroblasts from Jun-knockout and
system in which irradiated mesenchymal cells support th@unB-knockout mouse embryos and found that the'Joglls
growth of adult human keratinocytes (Rheinwald and Greerproduce very low levels of KGF-1 and GM-CSF, whereas
1975). This led to the identification of mesenchyme-derivedunB’~ cells produce elevated levels of these factors
factors that regulate keratinocyte proliferation, including(Szabowski et al., 2000). Incorporation of these fibroblasts into
keratinocyte growth factor (KGF)-1. This is a member of thebi-layered skin equivalents with normal adult human
fibroblast growth factor (FGF) family that is exclusively keratinocytes for the epidermal layer led to strikingly different
produced by mesenchymal cells (Rubin et al., 1995; Wernergsults. Epidermal layers on skin equivalents containingJun
1998). However, only epithelial cells express the KGF receptdibroblasts were atrophic, basal cell proliferation was reduced,
and, hence, respond to KGF-1. Fibroblasts also produce oth@nd terminal differentiation was delayed. JunBibroblasts
factors that regulate the proliferation of cultured keratinocytesaused epidermal hyperplasia. IL-1 and other inflammatory
and play roles in wound repair. These include granulocytefactors, such as tumor necrosis factor (TMEgctivate AP-1-
macrophage colony-stimulating factor (GM-CSF), FGF-10mediated transcription and enhance the activity ofkBF-
(also known as KGF-2), parathyroid-hormone-related proteinfAngel and Szabowski, 2002). Differences in the phenotypes
hepatocyte growth factor/scatter factor (HGF/SF), epidermadf fibroblasts in skin might be related to how these cells
growth factor (EGF) and interleukin 6 (IL-6) (Waelti et al., respond to external signals and modulate the diverse group of
1992; Boxman et al., 1993; Rubin et al., 1993; Smola et algenes regulated by AP-1 transcription factors.
1993; Sato et al., 1995; Igarashi et al., 1996; Blomme et al.,
1999; Breuhahn et al., 2000; Mann et al., 2001; Marchese et
al., 2001; Werner and Smola, 2001). Dermal fibroblastic cells are associated with hair
Fibroblasts release growth factors/cytokines that play #llicles
significant role in wound repair by modulating the activity ofHair follicles are skin appendages formed predominantly by
keratinocytes. Smola et al. found that coculture of fibroblastsells of epidermal origin. Mesenchymal cells of the dermis play
and keratinocytes results in increased levels of KGF-1, IL-@ vital role in their formation in fetal skin and an equally
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significant role in regulating their cyclic growth, rest andSollberg et al., 1994; Kirk et al., 1995; Nakaoka et al., 1995;
regression phases in adults (Kulessa et al., 2000; Botchkaréderrick et al., 1996; Hasan et al., 1997; Agren et al., 1999).
2003). In fetal skin, mutual inductive events between localize&ignals such as TGBE-and connective tissue growth factor
dermal and epidermal cells proceed in a stringent spatiglay a significant role in the latter process (Grotendorst, 1997).
temporal manner. First, an as-yet-undefined signal emanating
from the dermis induces the formation of thickened epidermal ) o ) _
placodes (Holbrook and Minami, 1991; Hardy, 1992; Millar, The dermal fibroblast in bioengineering
2002; Botchkarev et al., 1999; Botchkarev et al., 2002)Much of our current knowledge regarding fibroblast
Differentiated epidermal cells provide a second signal thgthysiology is derived from studies of these cells grown on a
induces localized mesenchymal cells to condense and formpéastic substrate as monolayer cultures. Fibroblasts cultured in
defined pellet of cells immediately beneath the epidermahis manner retain many of their phenotypic characteristics (see
placodes (Holbrook and Minami, 1991; Hardy, 1992). Thesabove). Nonetheless, monolayer-cultured fibroblasts exhibit
cells stimulate the proliferation of epidermal cells in thesignificant metabolic differences from in vivo fibroblasts. For
placode, which drives the production of hair follicles deep inteexample, fibroblasts in monolayer culture actively proliferate
the dermal matrix (Hardy, 1992; Millar, 2002; Botchkarev,and produce many different types of extracellular matrix
2003). Simultaneously, condensed mesenchymal cells produn®lecule. Both of these characteristics are either suppressed or
proteases that clear a path for this ingrowth (Karelina et algreatly diminished in three-dimensional organotypic cultures
1993; Karelina et al., 1994; Karelina et al., 2000). Oncenuch in the same manner as in vivo (Mauch et al., 1988; Kono
elongation is complete, keratinocytes in the matrix region agt al., 1990; Geesin et al., 1993; Grinnell, 1994; Mio et al.,
the base of the follicle envelop the dermal papilla cells and996; Ivarsson et al., 1998; Rosenfeldt and Grinnell, 2000).
leave a narrow opening through which the vasculature and
nerves penetrate (Hardy, 1992; Millar, 2002; Botchkareyv, . ] ) )
2003). Condensed mesenchymal cells also give rise to a secdpgirmal and skin equivalents as biological models
population of dermal cells during the period in which folliclesThe application of three-dimensional organotypic cultures to
actively invade the dermal matrix. These dermal cells form &ssue-specific modeling studies has undergone significant
thin connective tissue sheath along the shaft of the follicldevelopment (Schmeichel and Bissell, 2003). Dermal and skin
(Jahoda and Reynolds, 2000). equivalents were among the first examples of such organotypic
cultures (Bell et al., 1979; Bell et al., 1981; Bell et al., 1983;
] . ) Asselineau et al., 1986). These culture systems provide a
The fibroblast in cutaneous wound repair resource for basic studies in skin biology, testing for topically
Fibroblasts play a crucial role in cutaneous wound repaiapplied products, and as a replacement for human skin. For
(Martin, 1997). These cells are attracted to wound sites by trexample, environmental aging of skin due to chronic exposure
localized release of growth factors/cytokines such as platelete UV irradiation poses cosmetic challenges and increased risk
derived growth factor (Pierce et al., 1991). The first wave obf skin cancers (Gilchrest, 1996). Bernerd and Asselineau
fibroblasts enters the wound site along with sproutingtudied the effects of UV irradiation in a skin equivalent model
vasculature. These cells differentiate into a specialized, b(Bernerd and Asselineau, 1997). They found that ‘sunburn’
ephemeral, cell type called the myofibroblast (Sappino et alcells were generated in the epidermis by an acute UVB
1990; Grinnell, 1994). exposure in much the same manner as occurs in skin.
Myofibroblasts, in response to monocyte/macrophageFurthermore, downregulation of keratinocyte differentiation
derived factors, produce a provisional wound matrix that isnarkers occurred at early time points following UVB
enriched in fetal-like fibronectin and hyaluronan (Clark, 1990gxposure. These situations were repaired in skin equivalents
Galilit and Clark, 1994; Juhlin, 1997; Singer and Clark, 1999)that were maintained in culture for extended periods of time.
These cells also provide the motive force to contract the wourld another study, they found that UVA exposure induces
(Sappino et al.,, 1990). Myofibroblasts disappear from theesponses specific to the dermal compartment of skin
wound site, apparently by apoptosis, and are replaced byeguivalents (Bernerd and Asselineau, 1998). Fibroblasts in the
second wave of fibroblasts that initiate the formation of aipper regions of the ‘dermal’ component of the skin
collagenous matrix (Grinnell et al.,, 1999). However, theirequivalents underwent apoptosis and disappeared from the
ability to organize it is impaired, which results in the formationconstructs. Over time, fibroblasts at the bottom of the skin
of scar tissue (Gailit and Clark, 1994; Shah et al., 1994; Shaguivalent were induced to proliferate and migrated into the
et al., 1995; Singer and Clark, 1999). Fetal skin is repairedpper region of the construct. This was accompanied by an
without scar formation (Adzick and Lorenz, 1994; Armstrongincrease in metalloproteinase (MMP)-1 synthesis by resident
and Ferguson, 1995; Liechty et al., 2000). This is mainly owindjbroblasts, which presumably enabled the cells to migrate
to differences in fetal and adult fibroblast phenotypes (Schawithin the collagen gel.
et al.,, 1985; Olsen and Uitto, 1989; Cullen et al., 1997; Michel et al. have investigated skin equivalents as potential
Gosiewska et al, 2001). The low level of growthtools for percutaneous absorption (Michel et al., 1993). They
factors/cytokine production by fetal cells, especially T&F- prepared human skin equivalents such that a constant surface
appears to be a major factor in the absence of scar formatianea was present and found that absorption of chemical agents
(Shah et al., 1994; Shah et al., 1995; Eckes et al., 2000). Tdepends on the thickness of the epidermis and its stratum
aberrant fibroblast phenotype also appears to contribute tmrneum. This process was not entirely equivalent to that
fibrotic disorders, such as keloid formation and sclerodermabserved in mice, but was sufficient to suggest that it might be
(Garner et al., 1993; Ghahary et al., 1994; Ghahary et al., 1996sed as an effective model for pharmacological and cosmetic
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testing. Development of skin equivalents that contain othesuggests thafP-1 and homeoboxgenes and their regulators
types of cell, such as immunocompetent cells and vasculptay roles in determining fibroblast diversity. Additional
endothelial cells (Regnier et al., 1997; Guironnet et al., 200Xktudies are required to define the roles of these and possibly
Ponec, 2002; Supp et al., 2002), might also provide insight intother regulatory genes in establishing and maintaining
biological and pharmacological responses. fibroblast diversity. With the increased reliance on the
development and application of three-dimensional skin
equivalents for biological and clinical purposes, it will be
Dermal and skin equivalents for skin replacement necessary to be more selective about the choice of fibroblast to
Several groups have employed skin equivalents for wounbe employed.
management for acute and chronic wounds (Boyce, 1996; Finally, the term ‘dermal fibroblast’ is an oversimplification.
Singer and Clark, 1999; Coulomb and Dubertret, 2002). Boyckn reality, dermal fibroblasts are a dynamic, diverse population
and colleagues (Boyce, 1996; Boyce and Warden, 2002; Boyoé cells. This means that we should take greater care defining
et al., 2002) used skin equivalents prepared from autologotise population of dermal fibroblast that is used in experimental
human keratinocytes and fibroblasts for grafting onto woundtudies. We are only beginning to understand the function of
sites and found that these grafts are equivalent to autologotigese cells in defining the structure and organization of skin
split-thickness skin grafts. Furthermore, the requirement foand their complex intercellular interactions. Our current
harvesting donor skin was less than that for conventional skiknowledge of fibroblast physiology is largely based upon
autografts. Inclusion of a ‘dermal’ component provides ammonolayer culture studies. These studies more closely reflect
environment that promotes vascularization of the graft, anthe status of these cells in an early wound repair situation. The
fibroblasts play an active role in the replacement of the dermake of three-dimensional dermal and skin equivalents in future
matrix (Demarchez et al., 1992; Supp et al., 2002). studies should provide more relevant information regarding
possible physiological differences between fibroblast
) subpopulations in vivo. Much work will be required in the
Concluding remarks future if we are to understand and appreciate fully this diverse
Fibroblasts represent a diverse population of cells (Fries et apppulation of cells.
1994). Phenotypic differences are manifested in a variety of
ways: extracellular matrix production and organization, We gratefully acknowledge Irwin Schafer (Case Western Reserve
production of growth factors/cytokines, and participations irpn_lversny) a_nd Daniel Assellneag gnd Hervé Pageon (L'Oréal Life
inflammatory responses (Fries et al., 1994; Smith et al., 199 .g'ences’ Clichy, France) for providing the adult site-matched dermal
Doane and Birk, 1991: Limeback et al., 1982: Derdak et al ibroblasts used in experimental studies in this laboratory, and David

) ; . arrino and Marilyn Baber for expert advice and creative
1992; Stephens et al., 2001). In the skin, two forms of flbrobla% llaboration. Financial support for studies in this laboratory was

heterogeneity have been noted. Intrasite heterogeneity relaigsyided by LOréal Life Sciences and the National Institutes of
to the position of fibroblasts in the context of epidermalyesith.

structures. Thus, papillary, reticular and hair-follicle-

associated fibroblasts differ from each other. A second type of

heterogeneity is based upon the anatomical location within thgeferences

body. Thus, interfollicular fibroblasts from scalp, face, trunk,agsick, N. s. and Lorenz, H. P(1994). Cells, matrix, growth factors, and
leg, and so on exhibit subtle differences from each other. Lessthe surgeon. The biology of scarless fetal wound refair. Surg220, 10-

is currently known about these intersite differences in 18.

fbroblests. Chang et al. have shawn thal human dermérss, IS, Senios b 1 Deneoner, o Mever 0. o Cebovienn,
f'_bmbla‘Sts obtained from various anatomical sites EXPreSSicsiated from chronic venous leg ulcers is ulcer-age dependlelmvest.
different homeobox transcription factors (Chang et al., 2002). permatol 112 463-469.

The AP-1 family of transcription factors is important in Akagi, A., Tajima, S., Ishibashi, A., Yamaguchi, N. and Nagai, ¥1999).
regulating the production of factors that regulate epithelial- Expression of type XVI collagen in human skin fibroblasts: enhanced
mesenchymal interactions, cellular proliferation  and expression in fibrotic skin diseaséslnvest. Dermatoll13 246-250.

llular matrix production (Angel and Szabowski 2002Andread's’ S: I Hamoen, K. £ varmush, M. L. and Morgan, J.
eXtraC,e : p _9 - ) ' R. (2001). Keratinocyte growth factor induces hyperproliferation and
Shaullan an_d K_arln, 2002). Papll_lary and reticular d?fma| delays differentiation in a skin equivalent model systE&SEB J 15,
fibroblasts differ in these characteristics. Therefore, additional 898-906. _ ' _
studies related to this family of factors might help us toAngel, P. and Szabowski, A.(2002). Function of AP-1 target genes in

understand the differences between subpopulations of dermaB“fée'”Chwm""e'o'the"all cross-talk in skiiochem. Pharmacobd, 949-

fibroblasts. Ansel, J. C., Kaynard, A. H., Armstrong, C. A., Olerud, J., Bunnett, N.
Fibroblast diversity in the skin raises questions that will and Payan, D. (1996). Skin-nervous system interactionk. Invest.

require experiments to provide answers. Inductive influences Dermatol.106 198-204. ,

from the epidermis result in the differentiation of fibroblast$r$zt:?§ﬁéi36§%r§’;?S':Czrff‘i‘e’”tb '\gé;l\r/}iiél;?r?:r)lbtoyggogsﬂ%gongnzkknegﬁgg -

associated with hair follicles. However, the factor(s) or event(s) e pouch young of a marsupisonodelphis domesticev. Biol 169

that drives the differentiation of papillary and reticular cells are 242-260.
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